Nobel Prize 2006: Medicine, Physics and Chemistry

The Nobel Prize in Physiology or Medicine for 2006: Andrew Z. Fire and Craig C. Mello for their discovery of “RNA interference – gene silencing by double-stranded RNA”. ‘This year’s Nobel Laureates have discovered a fundamental mechanism for controlling the flow of genetic information. Our genome operates by sending instructions for the manufacture of proteins from DNA in the nucleus of the cell to the protein synthesizing machinery in the cytoplasm. These instructions are conveyed by messenger RNA (mRNA). In 1998, the American scientists Andrew Fire and Craig Mello published their discovery of a mechanism that can degrade mRNA from a specific gene. This mechanism, RNA interference, is activated when RNA molecules occur as double-stranded pairs in the cell. Double-stranded RNA activates biochemical machinery which degrades those mRNA molecules that carry a genetic code identical to that of the double-stranded RNA. When such mRNA molecules disappear, the corresponding gene is silenced and no protein of the encoded type is made.’

Nobel Prize in Physics for 2006: John C. Mather and George F. Smoot for their discovery of “the blackbody form and anisotropy of the cosmic microwave background radiation”. ‘This year the Physics Prize is awarded for work that looks back into the infancy of the Universe and attempts to gain some understanding of the origin of galaxies and stars. It is based on measurements made with the help of the COBE satellite launched by NASA in 1989. The COBE results provided increased support for the Big Bang scenario for the origin of the Universe, as this is the only scenario that predicts the kind of cosmic microwave background radiation measured by COBE. These measurements also marked the inception of cosmology as a precise science. It was not long before it was followed up, for instance by the WMAP satellite, which yielded even clearer images of the background radiation. Very soon the European Planck satellite will be launched in order to study the radiation in even greater detail.’

Nobel Prize in Chemistry for 2006: Roger D. Kornberg for his “studies of the molecular basis of eukaryotic transcription”. ‘In order for our bodies to make use of the information stored in the genes, a copy must first be made and transferred to the outer parts of the cells. There it is used as an instruction for protein production – it is the proteins that in their turn actually construct the organism and its function. The copying process is called transcription. Roger Kornberg was the first to create an actual picture of how transcription works at a molecular level in the important group of organisms called eukaryotes (organisms whose cells have a well-defined nucleus). Mammals like ourselves are included in this group, as is ordinary yeast. Transcription is necessary for all life. This makes the detailed description of the mechanism that Roger Kornberg provides exactly the kind of “most important chemical discovery” referred to by Alfred Nobel in his will.’



Speak Your Mind

*