Another Step Toward Quantum Computers

A Quantum (Computer) Step. ‘A University of Utah physicist took a step toward developing a superfast computer based on the weird reality of quantum physics by showing it is feasible to read data stored in the form of the magnetic “spins” of phosphorus atoms.
“Our work represents a breakthrough in the search for a nanoscopic [atomic scale] mechanism that could be used for a data readout device,” says Christoph Boehme, assistant professor of physics at the University of Utah. “We have demonstrated experimentally that the nuclear spin orientation of phosphorus atoms embedded in silicon can be measured by very subtle electric currents passing through the phosphorus atoms.”
The study by Boehme and colleagues in Germany will be published in the December issue of the journal Nature Physics and released online Sunday, Nov. 19.
“We have resolved a major obstacle for building a particular kind of quantum computer, the phosphorus-and-silicon quantum computer,” says Boehme. “For this concept, data readout is the biggest issue, and we have shown a new way to read data”.’ [Read the whole article]

The Quantum Computer, an Introduction by Jacob West. ‘In a quantum computer, the fundamental unit of information (called a quantum bit or qubit), is not binary but rather more quaternary in nature. This qubit property arises as a direct consequence of its adherence to the laws of quantum mechanics which differ radically from the laws of classical physics. A qubit can exist not only in a state corresponding to the logical state 0 or 1 as in a classical bit, but also in states corresponding to a blend or superposition of these classical states. In other words, a qubit can exist as a zero, a one, or simultaneously as both 0 and 1, with a numerical coefficient representing the probability for each state.’

How Quantum Computers Will Work



Speak Your Mind

*